# Formation of a diazadiphosphetidine from the reactions of a bis(aminosilyl) ether with PCl<sub>3</sub>: crystal structure of *cis*-[(Bu<sup>t</sup>NH)PNBu<sup>t</sup>]<sub>2</sub>

# N. Dastagiri Reddy, Anil J. Elias \*, and Ashwani Vij b

- <sup>a</sup> Department of Chemistry, Indian Institute of Technology, Kanpur, 208 016, UP, India
- <sup>b</sup> Single Crystal Diffraction Laboratory, University of Idaho, Moscow, Idaho 83843, USA

Reaction of  $O[SiMe_2N(Bu^t)H]_2$  1 with  $PCl_3$  in 1:1 molar ratio in hexane in presence of  $NEt_3$  gave the cyclic four-membered diazadiphosphetidine *cis*-[(Bu<sup>t</sup>NH)PNBu<sup>t</sup>]\_2 2 instead of the expected six-membered silazoxyphosphine indicating cleavage of the Si–N bond. A crystal structure analysis of 2 showed that the NH hydrogens of the Bu<sup>t</sup>NH groups are in an *endo-endo* orientation above the (PN)<sub>2</sub> ring which is in contrast to the *exo-endo* orientation for the known structure of its disulfide.

Bis(aminosilyl) ethers of the type  $O[SiMe_2N(R)H]_2$  (R = Me, Et or But) are excellent starting materials for the synthesis of novel inorganic heterocycles as well as metallacycles having Si, N, O and another heteroelement as part of the ring framework. Wannagat and co-workers carried out detailed reactions of  $O[SiMe_2N(R)H]_2$  ( R = Me or Et ) with a variety of maingroup halides such as PPhCl<sub>2</sub>, PEtCl<sub>2</sub>, PMeCl<sub>2</sub>, SnCl<sub>4</sub>, GeCl<sub>4</sub>, AsCl<sub>3</sub>, SiMe(CH<sub>2</sub>=CH)Cl<sub>2</sub>, SiCl<sub>4</sub>, SiBr<sub>4</sub>, and BeCl<sub>2</sub> in the presence of NEt<sub>3</sub> as HCl scavenger or after dilithiation using nbutyllithium. The reactions invariably led to the formation of six-membered heterocycles of the type  $L_nMSi_2N_2O$  [ $L_nM = PhP$ , EtP, MeP, Cl<sub>2</sub>Sn, Cl<sub>2</sub>Ge, ClAs, Me(CH<sub>2</sub>=CH)Si, Cl<sub>2</sub>Si, Br<sub>2</sub>Si or Be]. Reactions with TiCl<sub>4</sub> and ZrCl<sub>4</sub> also gave similar metallacycles which were spirocyclic in nature.<sup>5</sup> Recently Roesky and co-workers carried out reactions of O[SiMe2N(But)H]2 1 after dilithiation with main-group and transition metal halides in low oxidation states to synthesize novel six-membered silazoxy metallacycles with  $Te^{II}$ ,  $Sn^{II}$  and  $Ge^{II \, 6}$  as the heteroelement as well as twelve-membered silazoxy metallacycles with  $Zn^{II}$ , Co<sup>II</sup>, <sup>7</sup> Fe<sup>II</sup>, Mn<sup>II</sup>, Ni<sup>II</sup> or Cr<sup>II</sup> wherein the metals, were stabilized in low co-ordination and oxidation states. A variety of reactions have also been carried out on PIIISi<sub>2</sub>N<sub>2</sub>O ring compounds (Me and Ph substituents on P, Me on N) leading to oxidation of the phosphorus(III) site to PV while retaining the six-membered ring structure.<sup>2</sup> Similar silazoxy heterocycles with PV as part of the ring framework were also prepared by reactions of phenoxy thiophosphoryl dihydrazide and phenoxy phosphoryl dihydrazide with tetraalkyl-1,3- dichlorodisiloxanes and structurally characterized.8

Reactions of O[SiMe<sub>2</sub>N(R)H]<sub>2</sub> with PCl<sub>3</sub> have been reported briefly as leading to only polymeric products which were not properly identified.<sup>1</sup> In our attempts to make silazoxyphosphines with varying ring sizes and substituents on silicon, nitrogen and phosphorus, we observed for the first time that instead of cyclization to form a six-membered silazoxyphosphine, O[SiMe<sub>2</sub>N(Bu¹)H]<sub>2</sub> cleaves at the Si–N bonds and forms the diazadiphosphetidine *cis*-[(Bu¹NH)PNBu¹]<sub>2</sub> 2. We report herein the details of this unusual reaction as well as the crystal structure of 2.

## **Experimental**

All manipulations were carried out using standard Schlenk techniques using a vacuum line in an atmosphere of dry nitrogen. The compound  $O[SiMe_2N(Bu^t)H]_2$  1 was prepared according to the reported procedure,  $^7$   $PCl_3$  (Aldrich) was distilled prior to use and hexane and triethylamine were distilled and

dried by standard procedures. In a typical reaction 1 (1.22 g, 4.4 mmol) was first dissolved in hexane (30 cm<sup>3</sup>), the solution cooled to 0 °C and with vigorous stirring, PCl<sub>3</sub> (0.62 g, 4.5 mmol) added slowly using a syringe. After adding triethylamine (1.50 cm<sup>3</sup>), the mixture was brought to room temperature over a period of 15 min and then refluxed for 36 h whereupon a white solid (identified as NEt3·HCl) was observed. This was filtered off using a frit under nitrogen and the filtrate concentrated in vacuo to yield a semisolid mass which was sensitive to air and moisture. On redissolving this in hexane and keeping it at 0 °C for 24 h, colourless crystals of cis-[(ButNH)PNBut]2 2 were obtained (0.43 g, 56%), m.p. 143 °C (from hexane) (Found: C, 55.1; H, 11.2.  $C_{16}H_{38}N_4P_2$  requires C, 55.2; H, 10.9%);  $\tilde{v}_{max}/cm^{-1}$ 3320w, 2915s, 1460s, 1362s, 1220s, 1040m, 1030m, 998s, 915w, 870s, 820m, 790m and 735m (Nujol);  $\delta_{H}(C_6D_6)$  1.28 (18 H, s, CH<sub>3</sub>), 1.53 (18 H, s, CH<sub>3</sub>) and 2.60 (2 H, br s, NH);  $\delta_P(C_6D_6)$ 89.1 (s). These data were found to agree with the reported values for 2.9-11

## Crystallography

Single crystals of *cis*-[(Bu<sup>t</sup>NH)PNBu<sup>t</sup>]<sub>2</sub> **2** suitable for X-ray studies were obtained by slow crystallization under nitrogen from hexane at 0 °C.

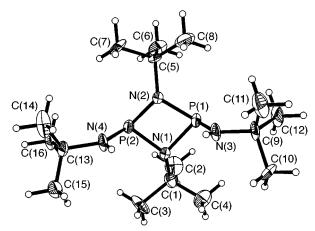
Crystal data and data collection parameters.  $C_{16}H_{38}N_4P_2$ , M=348.44, monoclinic, space group Pc, a=9.6654(5), b=5.9212(3), c=18.9757(9) Å,  $\beta=100.68(10)^\circ$ , U=1067.18(9) Å, T=213 K, graphite-monochromated Mo-K $\alpha$  radiation,  $\lambda=0.710.73$  Å, Z=2,  $D_c=1.084$  Mg m $^{-3}$ , F(000)=384, colourless crystals with dimensions  $0.35\times0.20\times0.15$  mm,  $\mu(\text{Mo-K}\alpha)=0.207$  mm $^{-1}$ , SADABS absorption correction,  $^{12}$  maximum and minimum transmission 0.962 and 0.783, Siemens SMART diffractometer with a CCD detector at -54 °C,  $\theta$  range for data collection  $2.14-25.00^\circ$ , limiting indices  $-12 \le h \le 12$ ,  $-6 \le k \le 7$ ,  $-25 \le l \le 24$ , reflections collected 10 309, independent reflections 3102 ( $R_{\text{int}}=0.0297$ ). The data were acquired using Siemens SMART software and processed on a SGI-Indy/Indigo 2 workstation by using the SAINT software.  $^{13}$ 

**Structure solution and refinement.** The structure was solved by direct methods using the SHELXS  $90^{14}$  program and refined by full-matrix least squares on  $F^2$  using SHELXL 93, incorporated in SHELXTL-PC V  $5.03.^{15}$  All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were located from the difference electron-density maps and included in the refinement process in an isotropic manner. The final R indices were

[ $I > 2\sigma(I)$ ]; R(F) = 0.047 and  $wR(F^2) = 0.113$ , parameters refined = 188, goodness of fit = 1.06.

Atomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, *J. Chem. Soc., Dalton Trans.*, 1997, Issue 1. Any request to the CCDC for this material should quote the full literature citation and the reference number 186/494.

## **Results and Discussion**


In our attempts to make  $P^{III}$ -containing silazoxy heterocycles by the reactions of compound  $\mathbf{1}$  with  $PPhCl_2$  in presence of a tertiary amine or after lithiation we observed a general hesitancy for the reaction to proceed. A similar trend in reactivity was observed when transamination was attempted using  $P(NR_2)_3$  (R = Me or Et) with  $\mathbf{1}$ . However, a reaction of  $PCl_3$  with  $\mathbf{1}$  in the presence of  $NEt_3$  was found to proceed slowly on refluxing in hexane. Instead of the expected silazoxy phosphine, the reaction gave exclusively a diazadiphosphetidine  $\mathbf{2}$  (Scheme 1).

All reactions reported so far of O[SiMe2N(R)H]2 and MeN-[SiMe<sub>2</sub>N(R)H]<sub>2</sub> as such or after metallation, with main-group and transition-metal halides, have resulted in the formation of six- or twelve-membered heterocycles indicating the stability of the Si-N bond during such reactions. Reactions of phosphorus(III) dihalides like PRCl<sub>2</sub> (R = Me, Et or Ph) with O[Si- $Me_2N(R)H]_2$  and  $MeN[SiMe_2N(R)H]_2$  (R = Me or Et) are reported to give silazoxy and silaza phosphines which have been characterized by spectral and analytical techniques. 1,2 The fact that O[SiMe<sub>2</sub>N(Bu<sup>t</sup>)H]<sub>2</sub> 1 behaves differently may be related to a variety of factors. The bulkiness of the tertiary butyl group possibly prevents attack of the PCl<sub>2</sub> moiety of the HN(Bu<sup>t</sup>)-SiMe<sub>2</sub>OMe<sub>2</sub>Si(Bu<sup>t</sup>)NPCl<sub>2</sub> unit formed in the first step of the reaction on the other amino hydrogen. This may lead to the formation of ClSiMe2OMe2Si(But)NP(Cl)N(But)H which may further cleave at the Si-N bond leading to ButN=PNHBut. Dimerization of the latter can lead to the diazadiphosphetidine 2. It is noteworthy that isolation of mono- and di-chloro analogues of the diazadiphosphetidines<sup>16-18</sup> were not observed in this reaction.

Reactions leading to cleavage of Si–N bonds with phosphorus chlorides are well documented. <sup>19</sup> This being the first step followed by N–H cleavage to precipitate amine hydrochloride may also bring about the formation of **2**. This is further assisted by the fact that the P–Cl bonds in PCl<sub>3</sub> are comparatively weaker (326 kJ mol<sup>-1</sup>) than a standard Si–Cl bond (381 kJ mol<sup>-1</sup>). <sup>20</sup> In addition, the inherent stability of the diazadiphosphetidine **2** over the sterically crowded silazoxy phosphine also might contribute to the reaction proceeding in this way, similar to the observation of Markovskii *et al.* <sup>10</sup> where **2** is also formed in the reaction of (2,2,6,6-tetramethylpiperidino)-phosphorus dichloride with *tert*-butylamine.

#### Structure of cis-[(Bu<sup>t</sup>NH)PNBu<sup>t</sup>]<sub>2</sub>

The compound cis-[(Bu<sup>t</sup>NH)PNBu<sup>t</sup>]<sub>2</sub> **2** was first prepared in 1963 by Holmes and Forstner<sup>11</sup> by the reaction of tert-butylamine with PCl<sub>3</sub>. Although initially the molecule was



**Fig. 1** Molecular structure of *cis*-[(Bu<sup>t</sup>NH)PNBu<sup>t</sup>]<sub>2</sub> **2** showing the atom numbering scheme

Table 1 Selected bond lengths (Å) and angles (°) for compound 2

| P(1)-N(3)       | 1.619(6) | P(2)-N(1)        | 1.725(5) |
|-----------------|----------|------------------|----------|
| P(1)-N(2)       | 1.743(5) | N(1)-C(1)        | 1.463(9) |
| P(1)-N(1)       | 1.763(6) | N(2)-C(5)        | 1.495(8) |
| P(1)-P(2)       | 2.616(7) | N(3)-C(9)        | 1.493(8) |
| P(2)-N(2)       | 1.702(6) | N(4)-C(13)       | 1.489(8) |
| P(2)-N(4)       | 1.710(5) | , , , ,          |          |
| ` , ` , ,       | ` '      |                  |          |
| N(3)-P(1)-N(2)  | 105.3(3) | N(4)-P(2)-P(1)   | 118.2(2) |
| N(3)-P(1)-N(1)  | 104.7(3) | N(1)-P(2)-P(1)   | 42.0(2)  |
| N(2)-P(1)-N(1)  | 79.6(2)  | C(1)-N(1)-P(2)   | 126.9(5) |
| N(3)-P(1)-P(2)  | 117.5(2) | C(1)-N(1)-P(1)   | 124.1(4) |
| N(2)-P(1)-P(2)  | 40.0(2)  | P(2)-N(1)-P(1)   | 97.2(3)  |
| N(1)-P(1)-P(2)  | 40.8(2)  | C(5)-N(2)-P(2)   | 125.8(5) |
| N(2)-P(2)-N(4)  | 105.0(3) | C(5)-N(2)-P(1)   | 122.4(4) |
| N(2)-P(2)-N(1)  | 81.8(2)  | P(2)-N(2)-P(1)   | 98.8(3)  |
| N(4)-P(2)-N(1)  | 105.0(3) | C(9)-N(3)-P(1)   | 129.7(5) |
| N(2)-P(2)-P(1)  | 41.2(2)  | C(13)-N(4)-P(2)  | 131.1(5) |
| ( ) ( -) - ( -) | ()       | - ( -, (-, - (-, | (-)      |

thought to be Bu<sup>t</sup>N=PNHBu<sup>t</sup>, subsequent reports on the compound with a molecular weight determination and a single signal in the <sup>31</sup>P NMR spectrum confirmed the molecule as a diazadiphosphetidine existing as a pure configurational isomer. <sup>9,10</sup> While three different structural isomers are possible with respect to the orientation of the Bu<sup>t</sup>NH groups on the (PN)<sub>2</sub> ring, namely the NH hydrogens in the *exo-exo* (*a*), *exo-endo* (*b*) and *endo-endo* (*c*) orientations, the crystal structure shows that the orientation (*c*) is preferred. It is noteworthy that this was the structure predicted by Norman and co-workers <sup>9</sup> in the solution phase based on <sup>2</sup> $J_{\rm PNH}$  values from <sup>31</sup>P NMR data measured at various temperatures. Fig. 1 shows the molecular structure of compound 2 with the atom numbering scheme. Selected bond distances and angles are given in Table 1.

In contrast, the crystal structure of the disulfide of the diazadiphosphetidine *cis*-[(Bu<sup>t</sup>NH)P(S)NBu<sup>t</sup>]<sub>2</sub> shows the *exo-endo* orientation (*b*). A similar orientation was observed for the phosphorus(III) diazadiphosphetidine [(PhNH)P<sub>2</sub>(NPh)<sub>2</sub>]<sub>2</sub>-NPh.<sup>21</sup> The *endo-endo* orientation is similar to the orientation of the N(Me) groups observed in the case of *cis*-[(Ph<sub>2</sub>P)N(Me)PNBu<sup>t</sup>]<sub>2</sub>.<sup>22</sup> The crystal structure of **2** also provides data for an interesting comparison of the P–N ring bond distances of phosphorus-(III) and -(v) 1,3,2,4-diazadiphosphetidines. It is generally observed that these distances in phosphorous(III) diazadiphosphetidines are comparatively longer than those of phosphorous(v) diazadiphosphetidines.<sup>23-25</sup> Muir<sup>16</sup>

while comparing the structures of  $(Bu^tNPCl)_2$  (average ring P–N distance 1.689 Å) and  $[Bu^tNP(O)Cl]_2$  (average ring P–N distance 1.661 Å) have proposed that a possible reason for this can be due to a lesser delocalization of the nitrogen lone pairs on to the phosphorus atoms in the phosphorous(III) heterocycles. On comparing the structure of **2** with that of *cis*-[(Bu<sup>t</sup>NH)P(S)NBu<sup>t</sup>]<sub>2</sub>  $^9$  we observe that the average ring P–N distance in the former is 1.733 Å while that of latter is 1.685 Å. A similar variation is observed in the cases of [(PhNH)PNPh]<sub>2</sub>  $^{27}$  (average ring P–N distance 1.722 Å) and [(PhNH)P(S)NPh]<sub>2</sub>  $^{27}$  (average ring P–N distance 1.698 Å).

In conclusion, cleavage of  $O[SiMe_2N(Bu^t)H]_2$  at the Si–N bond on reaction with  $PCl_3$  is observed instead of substitution of the NH hydrogen. The diazadiphosphetidine **2** formed is characterized by X-ray structural analysis to have the NH groups of the Bu<sup>t</sup>NH moiety in an *endo-endo* orientation above the  $(PN)_2$  ring as predicted from solution studies. The method offers a new synthetic route to a variety of diazadiphosphetidines and indicates the need for a relook into the reactions of silazoxy and silaza diamines with transition- and main-group metal halides. Further work in this regard is currently underway.

# Acknowledgements

A. J. E. thanks the Department of Science and Technology, India, (DST) for financial assistance for this work under the SERC young scientist scheme (SR/OY/C-03/94). N. D. R. thanks University Grants Commission (UGC), India for a research fellowship.

#### References

- U. Wannagat, K. Giesen and F. Rabet, Z. Anorg. Allg. Chem., 1971, 382, 195.
- 2 U. Wannagat, K.-P. Giesen and H.-H. Falius, *Monatsh. Chem.*, 1973, **104**, 1444.
- 3 U. Wannagat and F. Rabet, Inorg. Nucl. Chem. Lett., 1970, 6, 155.
- 4 D. J. Brauer, H. Bürger, H. H. Moretto, U. Wannagat and K. Wiegel, J. Organomet. Chem., 1979, 170, 161.
- H. Bürger and K. Wiegel, Z. Anorg Allg. Chem., 1976, 419, 157;
  J. Organomet. Chem., 1977, 124, 279; Z. Anorg. Allg. Chem., 1976, 426, 301

- 6 A. J. Elias, H. W. Roesky, W. T. Robinson and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 1993, 495.
- 7 A. J. Elias, H.-G. Schmidt, M. Noltemeyer and H. W. Roesky, *Eur. J. Solid State Inorg. Chem.*, 1992, **29**, 23.
- U. Engelhardt and T. Bünger, Z. Naturforsch, Teil B, 1979, 34, 1107; Inorg. Nucl. Chem. Lett., 1978, 14, 21; U. Engelhardt, T. Bünger and B. Stromburg, Acta Crystallogr., Sect B, 1982, 38, 1173.
- 9 T. G. Hill, R. C. Haltiwanger, M. L. Thompson, S. A. Katz and A. D. Norman, *Inorg. Chem.*, 1994, **33**, 1770.
- 10 L. N. Markovskii, V. D. Romanenko, A. V. Ruba and L. A. Robenko, Zh. Obshch. Khim., 1980, 50, 337.
- 11 R. R. Holmes and J. A. Forstner, Inorg. Chem., 1963, 2, 380.
- 12 G. M. Sheldrick, SADABS, Siemens Analytical Instruments Division, Madison, WI, 1996.
- 13 SMART V 4.043 and SAINT V 4.035 softwares for CCD detector system, Siemens Analytical Instruments Division, Madison, WI, 1995.
- 14 G. M. Sheldrick, Acta Crystallogr., Sect A, 1990, 46, 467.
- 15 (a) G. M. Sheldrick, SHELXL 93, Program for the refinement of crystal structure, University of Göttingen, 1993; (b) SHELXTL 5.03 (PC Version), Program library for structure solution and molecular graphics, Siemens Analytical Instruments Division, Madison, WI, 1995
- 16 K. W. Muir, J. Chem Soc., Dalton Trans., 1975, 259.
- 17 G. Bulloch and R. Keat, J. Chem Soc., Dalton Trans., 1974, 2010.
- 18 R. Jefferson, J. F. Nixon, T. M. Painter, R. Keat and L. Stobbs, J. Chem. Soc., Dalton Trans., 1973, 1414.
- 19 R. H. Nielson, in *Encyclopedia of Inorganic Chemistry*, ed. R. B. King, Wiley, Chichester, 1994, vol. 6, pp. 3181–3198; M. Shakir and H. W. Roesky, *Phosphorus Sulfur Silicon Relat. Elem.*, 1994, 93, 13; R. A. Shaw, *Phosphorus Sulfur Relat. Elem.*, 1978, 4, 101.
- 20 J. E. Huheey, E. A. Keiter and L. R. Keiter, *Inorganic Chemistry*, Harper Collins, New York, 4th edn., 1993, p. A 30.
- 21 M. L. Thompson, A. Tarassoli, R. C. Haltiwanger and A. D. Norman, *Inorg. Chem.*, 1987, 26, 684.
- 22 D. A. Harvey, R. Keat, A. N. Keith, K. W. Muir and D. S. Rycroft, *Inorg. Chim. Acta*, 1979, 34, L201.
- 23 W. A. Kamil, M. R. Bond, R. D. Willet and J. M. Shreeve, *Inorg. Chem.*, 1987, 26, 2879.
- 24 S. S. Kumaravel, S. S. Krishnamurthy, T. S. Cameron and A. Liden, *Inorg. Chem.*, 1988, 27, 4546.
- 25 K. W. Muir, Acta Crystallogr., Sect B, 1977, 33, 3586.
- 26 A. Tarassoli, M. L. Thompson and A. D. Norman, *Inorg. Chem.*, 1988, 27, 3382.
- 27 C.-C. Chang, R. C. Haltiwanger, M. L. Thompson, H.-J. Chen and A. D. Norman, *Inorg. Chem.*, 1979, **18**, 1899.

Received 27th January 1997; Paper 7/00604G